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ABSTRACT: The soybean industry requires rapid, accurate, and precise technologies for the analyses of seed/grain
constituents. While the current gold standard for nondestructive quantification of economically and nutritionally important
soybean components is near-infrared spectroscopy (NIRS), emerging technology may provide viable alternatives and lead to next
generation instrumentation for grain compositional analysis. In principle, Raman spectroscopy provides the necessary chemical
information to generate models for predicting the concentration of soybean constituents. In this communication, we explore the
use of transmission Raman spectroscopy (TRS) for nondestructive soybean measurements. We show that TRS uses the light
scattering properties of soybeans to effectively homogenize the heterogeneous bulk of a soybean for representative sampling.
Working with over 1000 individual intact soybean seeds, we developed a simple partial least-squares model for predicting oil and
protein content nondestructively. We find TRS to have a root-mean-standard error of prediction (RMSEP) of 0.89% for oil
measurements and 0.92% for protein measurements. In both calibration and validation sets, the predicative capabilities of the
model were similar to the error in the reference methods.
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■ INTRODUCTION

A reliable measure of economically important soybean grain
components is important to the soybean industry. Soybean
producers, grain elevators, co-ops, processors, and distributors
desire reliable grain composition data for a variety of purposes.
In commercial trade, uncertainty in the analysis of a grain
component can cause major losses to grain elevators in
recouping premiums paid for that component. Discrepancies
between grain buyers and sellers can bring export shipments to
a halt or require major concessions by one or both parties,
potentially blemishing future opportunities. Commodity
merchandisers and grain processors depend on valid analyses
of product value. Additionally, soybean breeders attempting to
develop and improve grain quality require reliable information
about grain composition. Laboratories providing grain industry
services and maintaining laboratory accreditation rely on the
latest, industry-approved technologies to ensure quality,
precision, and accuracy.

Researchers are continually striving for more precision,
accuracy, and breadth in scope for the prediction of grain
components. Therefore, grain analytics remains an active area
of research. Emerging science and technology may provide
viable alternatives and lead to next generation instrumentation
for grain compositional analysis. One such technology is
transmission Raman spectroscopy (TRS). Raman spectroscopy
uses only one wavelength of light to generate a signal response.
This wavelength can be chosen from the NIR spectrum and
thus can maintain the necessary penetration of light that is
achieved with NIR spectroscopy. During Raman scattering,
light traveling through the whole grain transfers energy to
specific, fundamental molecular vibrations. As a result, some of
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the light emitted from the grain is at a lower energy than the
light that was incident on the whole grain sample. These
measurable differences in energy arise as a result of specific
chemical groups in the soybean. The biochemical information
that is provided through a single Raman spectrum includes
distinct vibrational bands originating from proteins, amino
acids, lipids, fatty acids, and mineral.1−3

TRS is an expanding field that can provide quantitative
analysis of a sample’s chemistry. The method is providing
solutions in both pharmaceutical quality assurances4−6 and
biomedical sciences.7,8 The pass-through geometry, as opposed
to a backscattered configuration, maximizes the illuminated
sample volume and ensures that the largest contribution of
Raman photons originates from the bulk of the sample, thus
rejecting fluorescence that might arise from the sample
surface.9−11

The need for nondestructive grain analysis in the soybean
industry is currently met by near-infrared (NIRS) spectroscopy,
which provides nondestructive, quick, and easy grain analysis.
NIRS is a widely practiced and well accepted analytical
technique that has undergone extensive development.12 Figure
1 illustrates a NIR and a Raman spectrum of a soybean. In
Figure 1a, the primary absorption bands are highlighted and
labeled with arrows.13,14 The x-axis represents the spectral
wavelength of light detected, and the y-axis illustrates a measure
of light absorbance. In Figure 1b, the x-axis represents the
Raman shift from a 785 nm excitation frequency, and the y-axis
represents photon counts illustrating the relative contribution
of signal from specific functional groups present in the soybean.
The Raman spectrum clearly shows narrower spectral bands
that can be directly assigned to specific chemistry (functional
groups) including bands correlated with specific amino acids.15

High chemical specificity is important in grain analytics, and
therefore, Raman spectroscopy could have much potential in
quantifying economically important grain components.
The Raman spectral response is a result of the concentration

of different types of constituent chemical bonds. The resulting
spectrum of a given sample arises as a linear combination of the
chemical components in accordance with Beer’s law. Because
the spectral response is linear with analyte concentration, it is
possible to develop a calibration (mathematical model) to
predict the concentration of an analyte; however, this
mathematical model must first be developed using a primary/
reference analytical method for the range of concentrations that
are of interest for a particular sample. The mathematical model
used is usually some form of a linear regression (PCR or PLS);
however, neural network algorithms also have been used.16−18

There are only a few examples19−22 of using a Raman based

approach for seeds/grain analysis and no reports to apply the
methodology to whole intact soybeans. Despite the potential
for higher chemical specificity and the availability of data
analysis methods, the use of Raman spectroscopy for seed/
grain analysis has not been widespread, largely due to a
relatively weak Raman signal. However, advances in lasers,
filters, spectrographs, and detectors are making applications
such as seed analysis more practical. In this communication we
illustrate the use of a standard PLS calibration approach to
explore the potential of using TRS in nondestructively
predicting the compositional analysis of protein and oil
contained in intact single soybeans.

■ MATERIALS AND METHODS
Soybean Samples. Soybean samples anticipated to span the range

of potential values for oil and protein were collected and analyzed
using the Foss Infratec 1229 NIR spectrometer. Twenty samples best
representing the diversity of commercially available soybeans were
selected. Factors considered for representative sampling included oil,
protein, and moisture concentrations, seed size, seed shape, year
grown, seed coat sheen, and hilum color. Protein concentrations of the
20 selected samples ranged from 35.8 to 47.8% dry basis; oil
concentrations ranged from 18.3 to 23.8% dry basis. Subsamples of
these soybeans were submitted for Raman spectral analysis. Individual
soybeans were randomly selected, identified by a unique number, and
stored in 48-well tissue culture plates. Each plate held 20 soybeans,
one from each of the selected bulk samples. The randomly selected
soybeans were inspected to ensure that each was intact and free from
debris. Eight soybeans were removed from the sample set after visual
inspection (i.e. the soybean was cracked or damaged in some way).

Transmission Raman measurements were collected on 1072
soybeans. These were subdivided into 536 soybeans set aside for oil
measurements and 536 for protein measurements. Two of the oil
measurements were excluded from the data set due to obvious signs of
burning from the laser. This burning was likely the result of dark
colored dirt or debris on the seed coat. The remaining set of 1070
soybeans showed no sign of burning or damage. 236 soybeans were
used to develop a calibration model for predicting oil content, and 237
soybeans were used to develop a calibration model for predicting
protein content. The calibration model was then validated on an
independent set of 298 soybeans for oil prediction and 299 soybeans
for protein predictions.

After TRS Raman measurements, the samples were reduced to a
fine powder and “destructive chemistry” methods were used for
quantifying reference values of oil and protein. Individual soybeans
were initially crushed to approximately one-half to two-thirds original
diameter to rupture the seed coat and breach the cotyledons. Without
this initial damage to the soybeans, the time and degree of
pulverization was inconsistent. The damage was accomplished by
wrapping the seed in weighing paper and squeezing the seed gently
between the jaws of household pliers. It was found that a laboratory
ore crusher was effective but more difficult to use than the pliers. The

Figure 1. Soybean: (a) Representative NIR spectrum with assigned chemistry. Gray breaks indicate regions collected employing different detectors.
(b) Representative Raman spectrum with assigned chemical functional groups.
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crushed soybean was then placed in a stainless steel vial (0.5 in.
diameter × 1.0 in. long) along with a stainless steel ball (0.25 in.
diameter) and pulverized by shaking using a Wig-L-Bug model MSD
amalgamator (Dentsply Rinn, Elgin, IL) set at 3800 rpm and 14 s.
Ground samples were placed into 2.0 mL microcentrifuge tubes
(Fisher Scientific Cat. No. 02-681-258) until analysis could begin. Oil
concentration was determined using AOCS Official Procedure Am 5-
04 using an Ankom XT15 extractor (Ankom Technology, Macedon,
NY) with the entire amount of ground soybean (approximately 100−
200 μg) used for the analysis. Petroleum ether was used as the
extraction solvent with an extraction time of 60 min. Protein
concentrations were determined in accordance with AOCS Official
Method Ba 4e-93 using a Thermo Finnigan Flash EA1112 Nitrogen/
Protein analyzer (CE Elantech, Lakewood, NJ) and duplicate
quantities of approximately 200−300 μg.
Transmission Raman Spectroscopy. Transmission Raman

spectroscopy offers an approach for optically homogenizing a soybean
by taking advantage of the light scattering properties of the soybean,
allowing for the sampling volume to be larger than the spatial
heterogeneity of the grain. The ability for TRS to sample from the bulk
of the soybean is illustrated in Figure 2. Figure 2a illustrates a

computed tomography (CT) image of a soybean showing the internal
structure. CT measurements were collected at a 24.1 μm voxel
resolution with a SkyScan MicroCT scanner (model 1172, SkyScan,
Belgium) operating at 61 kV. A 2D pixel mesh that defines the
geometry of the soybean and its internal structures, Figure 2b, was
generated based on the CT data. We then modeled the propagation of
785 nm light through the mesh using a random walk Monte Carlo
simulation that generated Raman photons along the path the incident
photons traveled. The Monte Carlo modeling software,23 written in-
house, simulates the travel of hundreds of thousands of individual
photons through the mesh in order to determine the origin of the
Raman signal. After optical properties have been assigned, each photon
takes a “random walk” through the soybean mesh. Accurate photon
behavior at region boundaries follows Snell’s Law and the Fresnel
equations, while scattering and absorption events follow a Poisson
distribution and Beer’s Law, respectively. Using the ad-joint source
approximation,24 the sampling region of the detector can be modeled
in an analogous fashion. The intersection of the illuminated volume
and the sampled volume indicates the origin of the collected Raman
signal. Figure 2c illustrates the origin of Raman photons collected from
a collimated source at a detector placed in a 180° transmission

Figure 2. (a) A computed tomography image of a soybean. (b) A computed mesh for modeling the propagation of photons. (c) Random walk
generation of Raman photons through the mesh. (d) Modeled Raman photon distribution. (e) Photograph of a soybean illuminated with 200 mW of
785 nm light and schematic of NIR light scattering through the soybean.

Figure 3. Transmission Raman instrument for single grain soybean analysis. Excitation to collection is highlighted by red arrows.
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geometry. Figure 2d depicts a cross section of the detected Raman
photon distribution through a soybean illustrating that the bulk
soybean material is well sampled with a higher weighting of Raman
photons originating from the middle region of the soybean. Figure 2e
illustrates a photograph of a soybean illuminated with 200 mW of 785
nm light focused to a 3 mm spot on the back side of the soybean. The
center pane of Figure 2e shows the soybean “glowing”, illustrating that
the soybean is highly light scattering and that the 785 nm photons are
able to penetrate through the entire thickness of the soybean. Based on
this transmission approach, we built an instrument to collect Raman
spectra from a whole individual soybean. A labeled photograph of the
instrument is depicted in Figure 3.
In our experiments, 785 nm (Invictus, Kaiser Optical Systems Inc.,

Ann Arbor, MI) light was focused from a 100 μm core multimode fiber
to a 3.5 mm spot size projected onto the surface of a single intact
soybean. Illumination of the soybean occurred from the bottom of the
stage as illustrated by the red arrow in Figure 3. The power at the
sample was 300 mW. Upon 785 nm light illumination, the photons are
preferentially scattered as opposed to being absorbed. Consequently,
they propagate through the soybean diffusively and generate Raman
photons from multiple locations in the soybean. We position the
collection optics (labeled focusing optics in Figure 3) on the opposite
side of the soybean so that the illumination and collection are in a
180° transmission geometry. The focusing optics consisted of a 30 mm
focal length achromatic lens to collect light emitted from the soybean.
A second 60 mm focal length lens was utilized to focus the collected
light onto 47 collection fibers (Fiber Tech Optica, Kitchener, Ontario)
labeled as “Fiber bundle” in Figure 3. The collection fibers were
arranged in a rectangular array at the sample and a linear array at the
spectrograph. The spectrograph (RXN-1, Kaiser Optical Systems Inc.,
Ann Arbor, MI) was optimized for 785 nm excitation and included a
prestage notch filter for rejecting Raleigh (elastic) scattered light. For
all measurements, the spectral region from 400 to 1800 cm−1 was
collected with 6−8 cm−1 spectral resolution. Soybeans were manually
loaded into individual wells of the automated rotation stage. The
soybeans naturally fell onto their side, and as a result, laser illumination
was not over the hilum of the seed. The instrumentation was
combined with sampling and focusing stages controlled by LabView
(National Instuments, Austin, TX) to allow for automated data
collection once the stage was loaded.
Data Processing. All processing was performed in Matlab2008b

(The Mathworks, Nantucket, MA). The instrument’s output was a
frame from the charged coupled device (CCD) that consisted of 1024
× 255 pixels. The dispersive grating in the spectrograph projected the
wavelength axis along the width of the chip (1024 pixels) while the
chip height (255 pixels) contained spectra projected from each of the
collection fibers. The acquisition time per frame was 60 s with 10
sequential image frames collected per sample. Cosmic rays were
removed in an automated manner by comparing sequential frames and
applying a mean filter to remove pixels that had a value greater than 8
times the standard deviation of neighboring pixels. Frames from a
given sample were then averaged and pixels marked as cosmic rays did
not contribute to the average, resulting in a single CCD frame. A CCD
frame acquired without a sample present and processed in the same
manner was then subtracted from the sample frame to correct for the
CCD’s dark current. A “pin-cushion” and rotation correction was
applied to the sample frame to correct for slit image curvature and a
slight rotation of the CCD relative to the spectrograph’s slit.25 The
wavelength dependent response of the CCD was corrected by focusing
the collection optics onto a NIST traceable white light source emitted
from a calibration accessory (HCA, Kaiser Optical Systems Inc., Ann
Arbor, MI) and dividing the sample frame by the CCD’s white light
response. The neon channel of the same calibration accessory was then
used to collect the atomic emission spectrum of neon and convert the
wavelength axis of the CCD from pixels to wavenumbers. The Raman
shift was then calculated with the Raman spectra collected from a
standard Teflon sample. Baseline correction was then accomplished by
fitting the background signal with a fifth order polynomial and then
subtracting that background from the spectra. The median spectrum
from each frame was calculated. Each spectrum was then normalized

by area and then mean centered. This processing resulted in a single
Raman spectrum per soybean which was used as an input for PLS
model development.

For smaller data sets, a leave-one-out cross-validation model was
generated to predict the percent protein and percent oil from a Raman
spectrum using the wet chemistry results and the 20 spectra acquired
from each of the soybean varieties. The model was built in
Matlab2008b by using 19 of the 20 Raman spectra to generate a
PLS regression model with the “plsregress” function. The number of
components (latent variables) used to generate the model for cross-
validation was typically between three and six components. This was
manually determined by observing the minimum for the root-mean-
standard error of calibration validation in the leave-one-out cross-
validation model. The model was then used to predict the percent
protein and percent oil for the left-out soybean measurement. This was
repeated for each of the soybeans. The calibration model was evaluated
by comparing the predicted protein and oil concentrations to those
determined by wet chemistry methods.

For larger data sets it is known that a leave-one-out cross-validation
can lead to overfit calibration models.26 Therefore, we utilized a leave-
one-batch-out cross-validation. In this case, all the single soybeans
originated from 20 batches. The model was built in Matlab2008b with
the PLStoolbox (eigenvector Research Inc., Wenatchee, WA). A
custom cross-validation was developed in the software where one
batch was left-out to develop the calibration model and then the
calibration was utilized to predict the left-out batch. The number of
components (latent variables) used to generate the model for cross-
validation was typically between 3 and 6 components. This was
manually determined by observing the minimum for the root-mean-
standard error of calibration validation in the cross-validation model.
This was repeated for each of the batches. The calibration model was
evaluated by comparing the predicted protein and oil concentrations
to those determined by wet chemistry methods.

■ RESULTS AND DISCUSSION
To determine optimal acquisition times, the transmission
Raman instrument was loaded with 40 soybeans and a signal-to-
noise comparison was made by coadding multiple frames. The
results are illustrated in Figure 4. To quantify the signal-to-

noise, we compared the signal of the 1658 cm−1 band (CO
and CC) to the peak-to-peak signal in the 1770−1885 cm−1

region where no signal was present. The signal-to-noise
maximizes at a 5 min acquisition. This occurs because after 5
min the signal that is contributed by additional time is degraded
by the read-out noise of the CCD. Representative Raman
spectra acquired at 2, 5, and 10 min are illustrated in Figure 4b.
The signal-to-noise is very good for all three measurements;
however, it is optimal at a 5 min acquisition time. Minimizing

Figure 4. (a) Average signal-to-noise as a function of acquisition time.
(b) Representative Raman spectrum collected at 2 min (blue), 5 min
(green), and 10 min (red).
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the acquisition time would improve the instrument’s
throughput. We then used these different acquisition times to
generate a leave-one-out cross-validation model in order to
determine if the difference in signal-to-noise would affect the
predictions.
Next, we compare leave-one-out cross-validation models

developed for acquisition times ranging from 2 to 10 min in
Figure 5a. Despite the improved signal-to-noise at acquisition
times longer than 2 min, we do not observe a significant
improvement in the ability to predict the protein or oil content
as the acquisition time is increased, possibly due to the
multivariate nature of the algorithm. The predicted concen-
tration of protein and oil compared to the concentration
obtained by wet chemistry methods is illustrated in Figure 5b.
Here, five replicates of 2 min measurements per soybean were
used to acquire the spectral data. Error bars for replicates (one
standard deviation from the mean) are plotted; however, they
are smaller than the marker size. The relative standard error
(RMSECV) of the TRS method is less than 1% for both
protein and oil, as determined by the leave-one-out cross
validation model with a 2 min acquisition time.
The 2 min acquisition time was carried forward to a larger

calibration and validation set, though it should be noted that
acquisition times as low as 30 s are likely feasible with this
instrument. Larger calibration and validation sets are shown in
Figure 6. Figure 6a shows the predictions from a model
developed using a leave-one-batch-out cross-validation ap-

proach. The standard deviation in the wet chemistry for
replicate oil measurements on single soybeans was 1.07%, and
the standard deviation in wet chemistry for replicate protein
measurements was 0.75%. The errors in the reference method
are illustrated in Figure 6 as green, yellow, and red lines
representing 1, 2, and 3 standard deviations from a perfect
correlation. The root-mean-standard error of cross validation
for the oil calibration (RMSECV) set was 0.73%, and the root-
mean-standard error of prediction (RMSEP) was 0.89%.
Prediction capabilities were similar for protein content with a
root-mean-standard error of cross validation for the protein
calibration (RMSECV) set of 0.86% and the root-mean-
standard error of prediction (RMSEP) of 0.92%. In both
calibration and validation sets, the predicative capabilities of the
model were similar to the error in the reference method.
Here the TRS methodology was applied along with the light

scattering properties of soybeans to effectively homogenize the
heterogeneous bulk of individual intact soybeans. This
approach allows the nondestructive quantification of both
protein and oil content in individual soybeans. While NIRS is a
more practical approach to quantifying protein and oil content
as it is currently slightly cheaper and is faster, the work
demonstrated here suggests that there are alternative non-
destructive approaches capable of obtaining the same
information. Moreover, by using Raman spectroscopy, we
gain the benefit of chemically specific vibrational modes which
have the potential to improve quantification of additional

Figure 5. (a) Residuals illustrating the rms error and standard deviation of oil and protein content predicted using transmission Raman spectra of 40
soybeans (20 protein and 20 oil) for different acquisition times. (b) Correlation plot illustrating the Raman predicted values compared to wet
chemistry values for a 2 min acquisition time.

Figure 6. (a) Correlation plot consisting of 236 soybeans for oil calibration and 237 soybeans for protein calibration. (b) Correlation plot consisting
of 298 soybeans for oil validation and 299 soybeans for protein validation.

Journal of Agricultural and Food Chemistry Article

dx.doi.org/10.1021/jf301247w | J. Agric. Food Chem. 2012, 60, 8097−81028101



economically important grain components, including amino
acids, fatty acids, and sugars, among others. Studies to
investigate this potential are currently underway in our
laboratories.
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